
Benchmarking Neural Network Training Algorithms
ELLIS Workshop

Frank Schneider
July 19, 2023

imprs-is

Neural Networks are extremely useful models...
...but!

In practice, neural networks are...

▶ ...slow to train (training can easily take days or weeks)
▶ ...tedious (demanding human intervention and fiddeling)
▶ ...expensive (requiring dozens of trial runs)

We all want neural network training to be faster, more automatic, and more efficient!

1

Neural Networks are extremely useful models...
...but!

In practice, neural networks are...

▶ ...slow to train (training can easily take days or weeks)
▶ ...tedious (demanding human intervention and fiddeling)
▶ ...expensive (requiring dozens of trial runs)

We all want neural network training to be faster, more automatic, and more efficient!

1

The Three Pillars of Neural Network Training
Our focus is on the (training) algorithms

Hardware

▶ Leveraging accelerators
(e.g. GPUs, TPUs, etc.)

▶ Maximizing accelerator
utilization throughout
training

▶ Reducing hardware
bottlenecks

Software

▶ Convenient deep learning
frameworks (e.g.
PYTORCH, JAX, etc.)

▶ Efficient software
implementations

▶ Putting ML models into
production

Algorithms

▶ Efficient training
algorithms (e.g. ADAM,
SHAMPOO, etc.)

▶ Powerful deep learning
models (e.g.
TRANSFORMERS, etc.)

▶ Faster tuning methods
(e.g. BayesOpt, etc.)

2

The State of Deep Learning Training Methods
A confusingly crowded field of methods & hyperparameters

A huge number of training methods...

...and training tricks

▶ OneCycle scheduler,
gradient checkpointing

▶ Genetic Algorithm for
Hyperparameters

▶ Avoid batches that lead to
NaN/inf losses

▶ One cycle, low fidelity
training, SGD with restarts

▶ Proximal optimization for
regularizers

▶ Line searches for the
maximum learning rate

▶ Normalized updates
▶ Distributed Shampoo,

Normformer, GLU
▶ Weight averaging

▶ FreezeOut

▶ A different epsilon value!

▶ Check hyperparameter
performance over multiple
seeds

▶ Lowering the learning rate!

▶ Normalizing data works
better than batch or layer
norm

▶ Mixed precision training

▶ Train with a small subset

▶ Cyclic and one cycle LR

▶ Label smoothing

▶ ...

from “Descending through a Crowded Valley”
(Schmidt, Schneider, Hennig; 2021)

from the NeurIPS “HITY Workshop”
(Schneider et al.; 2022)

3

The State of Deep Learning Training Methods
A confusingly crowded field of methods & hyperparameters

A huge number of training methods... ...and training tricks

▶ OneCycle scheduler,
gradient checkpointing

▶ Genetic Algorithm for
Hyperparameters

▶ Avoid batches that lead to
NaN/inf losses

▶ One cycle, low fidelity
training, SGD with restarts

▶ Proximal optimization for
regularizers

▶ Line searches for the
maximum learning rate

▶ Normalized updates
▶ Distributed Shampoo,

Normformer, GLU
▶ Weight averaging

▶ FreezeOut

▶ A different epsilon value!

▶ Check hyperparameter
performance over multiple
seeds

▶ Lowering the learning rate!

▶ Normalizing data works
better than batch or layer
norm

▶ Mixed precision training

▶ Train with a small subset

▶ Cyclic and one cycle LR

▶ Label smoothing

▶ ...

from “Descending through a Crowded Valley”
(Schmidt, Schneider, Hennig; 2021)

from the NeurIPS “HITY Workshop”
(Schneider et al.; 2022) 3

The Current Benchmarks for Training Algorithms are Insufficient
and this holds back the entire field

▶ Unclear SOTA
There is no established protocol to train neural networks.

▶ No reliable way to detect algorithmic improvements
Let alone understand what novel methods are most promising.

▶ Training algorithms are assumed to not be useful until widely adopted
This chicken-and-egg problem is troubling for practitioners training neural networks and developers
of new training algorithms.

We desperately need new benchmarks for neural network training algorithms!

4

The Current Benchmarks for Training Algorithms are Insufficient
and this holds back the entire field

▶ Unclear SOTA
There is no established protocol to train neural networks.

▶ No reliable way to detect algorithmic improvements
Let alone understand what novel methods are most promising.

▶ Training algorithms are assumed to not be useful until widely adopted
This chicken-and-egg problem is troubling for practitioners training neural networks and developers
of new training algorithms.

We desperately need new benchmarks for neural network training algorithms!

4

MLCommons Introduces the AlgoPef: Training Algorithm Benchmark
An unprecedented effort to find faster deep learning training algorithms

Algorithms Working Group

George Dahl Google

Frank Schneider University of Tübingen

AlgoPerf: Training Algorithm Benchmark
A competition to measure neural network training
speedups due to algorithmic changes.

▶ A competitive benchmark with open
submissions

▶ Compete on time-to-result over multiple deep
learning workloads

▶ A huge large-scale effort by 25+ researchers
from Google, University of Tübingen, University
of Toronto, Meta AI, etc.

5

Challenge I: What is the target?
Which algorithms trains the fastest depends on what it means for training to be complete

20,000 50,000 80,000 110,000 140,000

Step

0.25

0.30

0.35

0.40

0.45

0.50

V
a
li
d
a
ti

o
n

E
rr

o
r

20,000 50,000 80,000 110,000 140,000

Step

Figure 1: Left: Validation error for two different runs (,) of ADAM on
RESNET-50 on IMAGENET. Right: The best validation error obtained so far.
The runs intersect multiple times (✖).

▶ Directly comparing training
curves is ill-posed

▶ Without defining the target in
advance, we can champion any
method

▶ We are effectively moving the
goal post after the experiment

6

Challenge I: What is the target?
Which algorithms trains the fastest depends on what it means for training to be complete

20,000 50,000 80,000 110,000 140,000

Step

0.25

0.30

0.35

0.40

0.45

0.50

V
a
li
d
a
ti

o
n

E
rr

o
r

20,000 50,000 80,000 110,000 140,000

Step

Figure 1: Left: Validation error for two different runs (,) of ADAM on
RESNET-50 on IMAGENET. Right: The best validation error obtained so far.
The runs intersect multiple times (✖).

▶ Directly comparing training
curves is ill-posed

▶ Without defining the target in
advance, we can champion any
method

▶ We are effectively moving the
goal post after the experiment

6

Solution I: Defining the Target and the Ruler
Setting a common goal post

▶ Defined Target Performances
We define competitive validation and test targets for each workload that can be reliably achieved
with currently popular methods.

▶ A Time-To-Results Competition
Measure the wall-clock runtime until the algorithm first hits the targets.

▶ Fixed Hardware
Submissions need to innovate on the training algorithm.

7

Challenge II: Dependence on the Workload
Seemingly minor changes to the model can have a large effect on the performance of different training algorithms

Training Algorithm RESNET-200
(standard)

NESTEROV 0.2090
ADAMW 0.2626

Table 1: Performance of training methods on different workloads. Shown is
the best error rate (lower is better) achieved.

▶ How general is a performance
improvement?

▶ Comparison with published
results is dangerous

▶ Important to choose relevant
workloads

8

Challenge II: Dependence on the Workload
Seemingly minor changes to the model can have a large effect on the performance of different training algorithms

Training Algorithm RESNET-200 RESNET-200
(standard) Extra-BN

NESTEROV 0.2090 No Feasible Trials
ADAMW 0.2626 0.2722

Table 1: Performance of training methods on different workloads. Shown is
the best error rate (lower is better) achieved.

▶ How general is a performance
improvement?

▶ Comparison with published
results is dangerous

▶ Important to choose relevant
workloads

8

Challenge II: Dependence on the Workload
Seemingly minor changes to the model can have a large effect on the performance of different training algorithms

Training Algorithm RESNET-200 RESNET-200
(standard) Extra-BN

NESTEROV 0.2090 No Feasible Trials
ADAMW 0.2626 0.2722

Table 1: Performance of training methods on different workloads. Shown is
the best error rate (lower is better) achieved.

▶ How general is a performance
improvement?

▶ Comparison with published
results is dangerous

▶ Important to choose relevant
workloads

8

Solution II: Evaluate on Multiple Fixed Workloads
Finding general-purpose algorithmic improvements

▶ Fixed Workloads
We don’t allow pipeline changes that are not part of the training algorithm.

▶ Aggregate across Multiple Workloads
Instead of specialized solutions, we want to find the best general-purpose method.

▶ Use Randomized Workload Variants
To test the robustness of the methods.

9

Solution II: Evaluate on Multiple Fixed Workloads
Finding general-purpose algorithmic improvements

Validation Test Maximum
Task Dataset Model Loss Metric Target Target Runtime

Clickthrough rate
prediction

CRITEO 1TB DLRMSMALL CE CE 0.123 649 0.126 060 7703

MRI reconstruction FASTMRI U-NET L1 SSIM 0.7344 0.741 652 8859

Image IMAGENET RESNET-50 CE ER 0.225 69 0.3440 63 008
classification VIT CE ER 0.226 91 0.3481 77 520

Speech LIBRISPEECH CONFORMER CTC WER 0.078 477 0.046 973 101 780
recognition DEEPSPEECH CTC WER 0.1162 0.068 093 92 509

Molecular property
prediction

OGBG GNN CE mAP 0.280 98 0.268 729 18 477

Translation WMT 2016 TRANSFORMER CE BLEU 30.8491 30.7219 48 151

9

Challenge III: Hyperparameters
Often training algorithms are only templates, not runnable procedures

Search Space Learning Rate Weight Decay 1 − β1 β2

ADAMW NARROW [2e-4, 5e-3] [2e-2, 0.5] 0.1 0.999
ADAMW BROAD [5e-6, 2e-2] [5e-6, 2.0] [1e-3, 1.0] 0.999

Table 2: Hyperparameter search spaces for two algorithms using ADAMW.

Workload ADAMW NARROW ADAMW BROAD

CRITEO 1TB DLRMSMALL 0.124 01 0.124 087
FASTMRI U-NET 0.734 746 0.734 311
IMAGENET RESNET-50 0.232 56 0.243 34

VIT 0.219 92 0.236 16
LIBRISPEECH CONFORMER 0.075 989 0.080 673

DEEPSPEECH 0.112 706 0.120 674
OGBG GNN 0.282 14 0.276 307
WMT 2016 TRANSFORMER 31.3523 30.9950

Table 3: Performance across multiple workloads for two ADAMW training
methods. Bolded number highlights the better performance.

▶ Methods have hyperparameters
that need to be set/tuned

▶ We can’t just ignore them as
they are workload-dependent

▶ Same update rule with different
hyperparameters is effectively
a different algorithm

10

Challenge III: Hyperparameters
Often training algorithms are only templates, not runnable procedures

Search Space Learning Rate Weight Decay 1 − β1 β2

ADAMW NARROW [2e-4, 5e-3] [2e-2, 0.5] 0.1 0.999
ADAMW BROAD [5e-6, 2e-2] [5e-6, 2.0] [1e-3, 1.0] 0.999

Table 2: Hyperparameter search spaces for two algorithms using ADAMW.

Workload ADAMW NARROW ADAMW BROAD

CRITEO 1TB DLRMSMALL 0.124 01 0.124 087
FASTMRI U-NET 0.734 746 0.734 311
IMAGENET RESNET-50 0.232 56 0.243 34

VIT 0.219 92 0.236 16
LIBRISPEECH CONFORMER 0.075 989 0.080 673

DEEPSPEECH 0.112 706 0.120 674
OGBG GNN 0.282 14 0.276 307
WMT 2016 TRANSFORMER 31.3523 30.9950

Table 3: Performance across multiple workloads for two ADAMW training
methods. Bolded number highlights the better performance.

▶ Methods have hyperparameters
that need to be set/tuned

▶ We can’t just ignore them as
they are workload-dependent

▶ Same update rule with different
hyperparameters is effectively
a different algorithm

10

Challenge III: Hyperparameters
Often training algorithms are only templates, not runnable procedures

Search Space Learning Rate Weight Decay 1 − β1 β2

ADAMW NARROW [2e-4, 5e-3] [2e-2, 0.5] 0.1 0.999
ADAMW BROAD [5e-6, 2e-2] [5e-6, 2.0] [1e-3, 1.0] 0.999

Table 2: Hyperparameter search spaces for two algorithms using ADAMW.

Workload ADAMW NARROW ADAMW BROAD

CRITEO 1TB DLRMSMALL 0.124 01 0.124 087
FASTMRI U-NET 0.734 746 0.734 311
IMAGENET RESNET-50 0.232 56 0.243 34

VIT 0.219 92 0.236 16
LIBRISPEECH CONFORMER 0.075 989 0.080 673

DEEPSPEECH 0.112 706 0.120 674
OGBG GNN 0.282 14 0.276 307
WMT 2016 TRANSFORMER 31.3523 30.9950

Table 3: Performance across multiple workloads for two ADAMW training
methods. Bolded number highlights the better performance.

▶ Methods have hyperparameters
that need to be set/tuned

▶ We can’t just ignore them as
they are workload-dependent

▶ Same update rule with different
hyperparameters is effectively
a different algorithm

10

Solution III: Make Tuning an Explicit Part of the Benchmark
Submitting algorithms not templates

▶ Hyperparameter (Search Spaces) are Part of the Submission
Submitters have to provide search spaces or default values.

▶ A Competitive Benchmark
Everyone submits their algorithm and how it should be tuned, therefore generating strong baselines.

▶ Two Tuning Rulesets
▶ In the self-tuning ruleset, everything is done on the clock (e.g. line-searches, freeze-thaw, default

hyperparameters, etc.).
▶ The external tuning ruleset allows parallel resources and only the fastest trial counts.

11

Summary

▶ Neural networks are useful but expensive models
▶ We are currently unable to identify which training algorithms are “best”
▶ We created the AlgoPerf: Training Algorithms Benchmark to find faster deep learning training

algorithms
▶ A competitive, time-to-result benchmark
▶ Running on fixed hardware and workloads
▶ Computing a joint score across multiple realistic workloads

Read the Rules github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md

Read the Paper arxiv.org/abs/2306.07179

Submit! Call for Submission coming soon

github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md
arxiv.org/abs/2306.07179

	anm0:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

