
The AlgoPerf: Training Algorithms Benchmark
Faster neural network training through better training algorithms

Frank Schneider
September 14, 2023

imprs-is



Neural Networks are extremely useful models...
...but!

In practice, neural networks are...

▶ ...slow to train (training can easily take days or weeks)
▶ ...tedious (demanding human intervention and fiddeling)
▶ ...expensive (requiring dozens of trial runs)

We all want neural network training to be faster, more automatic, and more efficient!

1



Neural Networks are extremely useful models...
...but!

In practice, neural networks are...

▶ ...slow to train (training can easily take days or weeks)
▶ ...tedious (demanding human intervention and fiddeling)
▶ ...expensive (requiring dozens of trial runs)

We all want neural network training to be faster, more automatic, and more efficient!

1



The state of deep learning training methods
A confusingly crowded field of methods & hyperparameters

A huge number of training methods...

...and training tricks

▶ OneCycle scheduler,
gradient checkpointing

▶ Genetic Algorithm for
Hyperparameters

▶ Avoid batches that lead to
NaN/inf losses

▶ One cycle, low fidelity
training, SGD with restarts

▶ Proximal optimization for
regularizers

▶ Line searches for the
maximum learning rate

▶ Normalized updates
▶ Distributed Shampoo,

Normformer, GLU
▶ Weight averaging

▶ FreezeOut

▶ A different epsilon value!

▶ Check hyperparameter
performance over multiple
seeds

▶ Lowering the learning rate!

▶ Normalizing data works
better than batch or layer
norm

▶ Mixed precision training

▶ Train with a small subset

▶ Cyclic and one cycle LR

▶ Label smoothing

▶ ...

from “Descending through a Crowded Valley”
(Schmidt, Schneider, Hennig; 2021)

from the NeurIPS “HITY Workshop”
(Schneider et al.; 2022)

2



The state of deep learning training methods
A confusingly crowded field of methods & hyperparameters

A huge number of training methods... ...and training tricks

▶ OneCycle scheduler,
gradient checkpointing

▶ Genetic Algorithm for
Hyperparameters

▶ Avoid batches that lead to
NaN/inf losses

▶ One cycle, low fidelity
training, SGD with restarts

▶ Proximal optimization for
regularizers

▶ Line searches for the
maximum learning rate

▶ Normalized updates
▶ Distributed Shampoo,

Normformer, GLU
▶ Weight averaging

▶ FreezeOut

▶ A different epsilon value!

▶ Check hyperparameter
performance over multiple
seeds

▶ Lowering the learning rate!

▶ Normalizing data works
better than batch or layer
norm

▶ Mixed precision training

▶ Train with a small subset

▶ Cyclic and one cycle LR

▶ Label smoothing

▶ ...

from “Descending through a Crowded Valley”
(Schmidt, Schneider, Hennig; 2021)

from the NeurIPS “HITY Workshop”
(Schneider et al.; 2022) 2



We desperately need new benchmarks for neural network training
algorithms.



The state of "benchmarking" in current deep learning optimizer papers
No standardized procedure to follow

▶ Each paper "invents" their own
evaluation protocol.

▶ Unreasonably hard to perform a
convincing, informative, and
practically relevant comparison with
strong baselines.

▶ Lot’s of subtle pitfalls with tuning,
problem-specification, etc.

3



Example of pitfalls when comparing training algorithms
Which algorithms trains the fastest depends on what it means for training to be complete

20,000 50,000 80,000 110,000 140,000

Step

0.25

0.30

0.35

0.40

0.45

0.50

V
a
li
d
a
ti

o
n

E
rr

o
r

20,000 50,000 80,000 110,000 140,000

Step

Figure 1: Left: Validation error for two different runs ( , ) of ADAM on RESNET-50 on
IMAGENET. Right: The best validation error obtained so far. The runs intersect multiple
times (✖).

▶ Directly comparing
training curves is
ill-posed.

▶ Without defining the
target in advance,
we can champion
any method (moving
the goal post after
the experiment).

▶ Tuning goals must
align.

4



Example of pitfalls when comparing training algorithms
Which algorithms trains the fastest depends on what it means for training to be complete

20,000 50,000 80,000 110,000 140,000

Step

0.25

0.30

0.35

0.40

0.45

0.50

V
a
li
d
a
ti

o
n

E
rr

o
r

20,000 50,000 80,000 110,000 140,000

Step

Figure 1: Left: Validation error for two different runs ( , ) of ADAM on RESNET-50 on
IMAGENET. Right: The best validation error obtained so far. The runs intersect multiple
times (✖).

▶ Directly comparing
training curves is
ill-posed.

▶ Without defining the
target in advance,
we can champion
any method (moving
the goal post after
the experiment).

▶ Tuning goals must
align.

4



MLCommons introduces the AlgoPerf: Training Algorithm Benchmark
An unprecedented effort to find faster deep learning training algorithms

Algorithms Working Group

AlgoPerf: Training Algorithm Benchmark
A standardized benchmark competition to measure
neural network training speedups due to
algorithmic changes.

An open large-scale effort by 25+ researchers from
Google, University of Tübingen, University of Toronto,
Meta AI, etc.

Chaired by

George Dahl Google

Frank Schneider University of Tübingen

5



The key features of AlgoPerf
A standardized competitive time-to-results benchmark

▶ A competitive time-to-results benchmark.
→ Everyone’s submissions are everyone’s strong baselines.

▶ Fixed hardware, workloads, and process.
→ Submissions need to provide training algorithm improvements.

▶ Aggregate across a variety of realistic workloads using performance profiles.
→ No specialized solutions but general-purpose methods.

▶ Explicitly accounts for hyperparameter tuning by providing search spaces.
→ Runable training algorithms, not algorithm templates.

6



The key features of AlgoPerf
A standardized competitive time-to-results benchmark

▶ A competitive time-to-results benchmark.
→ Everyone’s submissions are everyone’s strong baselines.

▶ Fixed hardware, workloads, and process.
→ Submissions need to provide training algorithm improvements.

▶ Aggregate across a variety of realistic workloads using performance profiles.
→ No specialized solutions but general-purpose methods.

▶ Explicitly accounts for hyperparameter tuning by providing search spaces.
→ Runable training algorithms, not algorithm templates.

6



The key features of AlgoPerf
A standardized competitive time-to-results benchmark

▶ A competitive time-to-results benchmark.
→ Everyone’s submissions are everyone’s strong baselines.

▶ Fixed hardware, workloads, and process.
→ Submissions need to provide training algorithm improvements.

▶ Aggregate across a variety of realistic workloads using performance profiles.
→ No specialized solutions but general-purpose methods.

▶ Explicitly accounts for hyperparameter tuning by providing search spaces.
→ Runable training algorithms, not algorithm templates.

6



The key features of AlgoPerf
A standardized competitive time-to-results benchmark

▶ A competitive time-to-results benchmark.
→ Everyone’s submissions are everyone’s strong baselines.

▶ Fixed hardware, workloads, and process.
→ Submissions need to provide training algorithm improvements.

▶ Aggregate across a variety of realistic workloads using performance profiles.
→ No specialized solutions but general-purpose methods.

▶ Explicitly accounts for hyperparameter tuning by providing search spaces.
→ Runable training algorithms, not algorithm templates.

6



The AlgoPerf Training Algorithms Benchmark
We need you!

Read the Rules github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md

Read the Paper arxiv.org/abs/2306.07179

Submit! Call for Submission coming soon

▶ Benchmark experts Join the effort and tell us how to improve!
▶ ML community Help us spread the word!
▶ Algorithm researchers Submit! AlgoPerf is the easiest way to convincingly demonstrate the

capabilities of your training algorithm.

github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md
arxiv.org/abs/2306.07179



	anm0: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


