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Neural Networks are extremely useful models...
...but!

In practice, neural networks are...

▶ ...slow to train (training can easily take days or weeks)
▶ ...tedious (demanding human intervention and fiddeling)
▶ ...expensive (requiring dozens of trial runs)

We all want neural network training to be faster, more automatic, and more efficient!
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The state of deep learning training methods
A confusingly crowded field of methods & hyperparameters

A huge number of training methods...

...and training tricks

▶ OneCycle scheduler,
gradient checkpointing

▶ Genetic Algorithm for
Hyperparameters

▶ Avoid batches that lead to
NaN/inf losses

▶ One cycle, low fidelity
training, SGD with restarts

▶ Proximal optimization for
regularizers

▶ Line searches for the
maximum learning rate

▶ Normalized updates
▶ Distributed Shampoo,

Normformer, GLU
▶ Weight averaging

▶ FreezeOut

▶ A different epsilon value!

▶ Check hyperparameter
performance over multiple
seeds

▶ Lowering the learning rate!

▶ Normalizing data works
better than batch or layer
norm

▶ Mixed precision training

▶ Train with a small subset

▶ Cyclic and one cycle LR

▶ Label smoothing

▶ ...

from “Descending through a Crowded Valley”
(Schmidt, Schneider, Hennig; 2021)

from the NeurIPS “HITY Workshop”
(Schneider et al.; 2022)
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We desperately need new benchmarks for neural network training
algorithms.



The state of "benchmarking" in current deep learning optimizer papers
No standardized procedure to follow

▶ Each paper "invents" their own
evaluation protocol.

▶ Unreasonably hard to perform a
convincing, informative, and
practically relevant comparison with
strong baselines.

▶ Lot’s of subtle pitfalls with tuning,
problem-specification, etc.
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Example of pitfalls when comparing training algorithms
Which algorithms trains the fastest depends on what it means for training to be complete
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Figure 1: Left: Validation error for two different runs ( , ) of ADAM on RESNET-50 on
IMAGENET. Right: The best validation error obtained so far. The runs intersect multiple
times (✖).

▶ Directly comparing
training curves is
ill-posed.

▶ Without defining the
target in advance,
we can champion
any method (moving
the goal post after
the experiment).

▶ Tuning goals must
align.
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MLCommons introduces the AlgoPerf: Training Algorithm Benchmark
An unprecedented effort to find faster deep learning training algorithms

Algorithms Working Group

AlgoPerf: Training Algorithm Benchmark
A standardized benchmark competition to measure
neural network training speedups due to
algorithmic changes.

An open large-scale effort by 25+ researchers from
Google, University of Tübingen, University of Toronto,
Meta AI, etc.

Chaired by

George Dahl Google

Frank Schneider University of Tübingen
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The key features of AlgoPerf
A standardized competitive time-to-results benchmark

▶ A competitive time-to-results benchmark.
→ Everyone’s submissions are everyone’s strong baselines.

▶ Fixed hardware, workloads, and process.
→ Submissions need to provide training algorithm improvements.

▶ Aggregate across a variety of realistic workloads using performance profiles.
→ No specialized solutions but general-purpose methods.

▶ Explicitly accounts for hyperparameter tuning by providing search spaces.
→ Runable training algorithms, not algorithm templates.
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The AlgoPerf Training Algorithms Benchmark
We need you!

Read the Rules github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md

Read the Paper arxiv.org/abs/2306.07179

Submit! Call for Submission coming soon

▶ Benchmark experts Join the effort and tell us how to improve!
▶ ML community Help us spread the word!
▶ Algorithm researchers Submit! AlgoPerf is the easiest way to convincingly demonstrate the

capabilities of your training algorithm.

github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md
arxiv.org/abs/2306.07179
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