DeepOBS A Deep Learning Optimizer Benchmark Suite

Frank Schneider 30 Sep 2019

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

The Status Quo of Benchmarking Deep Learning Optimizers

...far from optimal

Everyone creates their own benchmark

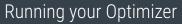
- C Repeated work (including bugs)
- Benchmarks are not comparable (not even the metric)
- Detential for cherry-picking

Doing proper benchmarks requires time

- **Q** Use of rather small test problems (MNIST)
- **Solution** Use only a few test problems
- Own optimizer gets more attention than the competition

..we are not quite there yet!

- 1. Run the optimizer on a test problem
- 2. Compare to the state of the art
- 3. Plot the results



...as simple as possible

import tensorflow as tf 1 from deepobs import tensorflow as tfobs 2 3 optimizer_class = tf.train.RMSPropOptimizer 4 hyperparams = {"learning_rate": {"type": float}, 5 "decay": {"type": float, "default": 0.9}} 6 7 runner = tfobs_runners_StandardRunner(optimizer class, hyperparams) 8 runner.run() 9

```
Figure: run_rmsprop.py
```

python run_rmsprop.py mnist_mlp --learning_rate=1e-3

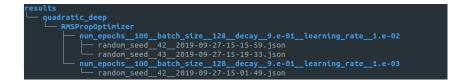
```
******
```

Evaluating after 0 of 100 epochs... TRAIN: loss 353.934 VALID: loss 353.813 TEST: loss 353.447

Evaluating after 1 of 100 epochs... TRAIN: loss 338.48

	Data set	Model	Description	Conv	RNN	Drop	BN	WD
•	2D	Noisy Beale Noisy Branin Noisy Rosenbrock	Noisy version of the Beale function Noisy version of the Branin function Noisy version of the Rosenbrock function					
•	Quadratic	N-Dimensional	100-dimensional ill-conditioned noisy quadratic					
•	MNIST	Log. Regr. MLP 2c2d VAE	Logistic regression Four layer fully-connected network Two conv. and two fully-connected layers Variational Autoencoder	<i>,</i>		1		
•	Fashion MNIST	Log. Regr. MLP 2c2d VAE	Logistic regression Four layer fully-connected network Two conv. and two fully-connected layers Variational Autoencoder	1		1		
•	CIFAR-10	3c3d VGG 16 VGG 19	Three conv. and three fully-connected layers Adapted version of VGG 16 Adapted version of VGG 19	\ \ \ \		1		1
•	CIFAR-100	3c3d VGG 16 VGG 19 All-CNN-C Wide ResNet-40-4	Three conv. and three fully-connected layers Adapted version of VGG 16 Adapted version of VGG 19 The all convolutional net Wide Residual Network	****		111	1	
•	SVHN	3c3d Wide ResNet-16-4	Three conv. and three fully-connected layers Wide Residual Network	1			1	1
•	IMAGENET	VGG 16 VGG 19 Inception-v3	VGG 16 VGG 19 Inception-v3 network	\ \ \ \		\$ \$ \$	1	1
•	Tolstoi	CharRNN	Recurrent Neural Network for character-level language modeling		1	1		

..the results



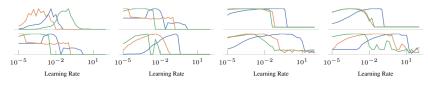
..a semi-automated process


```
import numpy as np
 1
     from torch.optim import SGD
 2
     from deepobs.pytorch.runners import StandardRunner
3
     from deepobs.tuner import GridSearch
 4
5
     optimizer_class = SGD
6
     hyperparams = {"lr": {"type": float}}
7
 8
     grid = {"lr": np.logspace(-5, 2, 6)}
9
10
     tuner = GridSearch(optimizer_class, hyperparams, grid, runner=StandardRunner)
11
12
     tuner.tune('quadratic deep', rerun best setting=True)
13
```

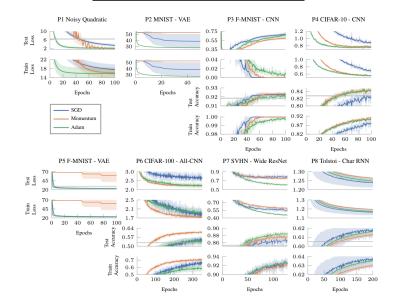
...getting page 7 of your paper

deepobs_plot_results results/ --full

Learning Rate Sensitivity



deepobs_plot_results results/ --full



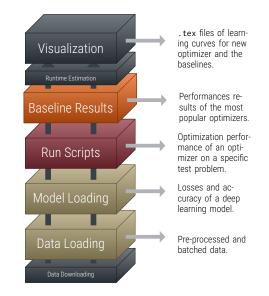
UNIVERSITÄT TUBINGEN

deepobs_plot_results results/ --full

Table 2: DEEPOBS benchmark for the baseline optimizers.

Test Problem		SGD	Momentum	Adam	Test Problem		SGD	Momentum	Adam
P1 Noisy	Performance Speed	3.42 45.60	1.92 36.90	2.08 9.00	P5 F-MNIST	Performance Speed	23.94 3.90	59.44 93.30	23.11 1.50
Quadratic	Tuneability	α: 3.98e-03	α:3.98e-04 μ: 0.99	α : 1.00e-01 ϵ : 1e-08 β_1 : 0.9 β_2 : 0.999	VAE	Tuneability	α: 3.98e-03	α: 2.51e-04 μ: 0.99	α : 1.58e-04 ϵ : 1e-08 β_1 : 0.9 β_2 : 0.999
P2 MNIST	Performance Speed	38.54 1.00	52.97 1.00	27.86 1.00	P6 CIFAR-100	Performance Speed	55.39 % 167.40	60.79 % 72.20	54.34 % 194.00
VAE	Tuneability	α: 3.98e-03	α : 1.58e-05 μ : 0.99	α : 1.58e-04 ϵ : 1e-08 β_1 : 0.9 β_2 : 0.999	All CNN C	Tuneability	α: 1.58e-01	α: 3.98e-03 μ: 0.99	$\begin{array}{l} \alpha {:} \ 1.00e{-}03 \\ \epsilon {:} \ 1e{-}08 \\ \beta_1 {:} \ 0.9 \\ \beta_2 {:} \ 0.999 \end{array}$
P3 F-MNIST	Performance Speed	92.25 % 38.70	92.32 % 51.10	92.03 % 39.20	P7 SVHN	Performance Speed	86.69 % 40.00	87.74 % 42.10	88.53 % 34.60
CNN	Tuneability	α: 1.58e-01	α : 1.00e-03 μ : 0.99	α : 2.51e-04 ϵ : 1e-08 β_1 : 0.9 β_2 : 0.999	Wide ResNet	Tuneability	α: 2.51e-01	α: 3.98e-03 μ: 0.99	α : 6.31e-04 ϵ : 1e-08 β_1 : 0.9 β_2 : 0.999
P4 CIFAR-10	Performance Speed	82.76 % 77.10	84.53 % 41.00	84.30 % 44.60	P8 TOLSTOI	Performance Speed	61.71 % 57.90	61.29 % 96.30	61.68 % 79.20
CNN	Tuneability	α: 1.58e-02	α: 3.98e-04 μ: 0.99	$\begin{array}{l} \alpha: \ 2.51\text{e-}04 \\ \epsilon: \ 1\text{e-}08 \\ \beta_1: \ 0.9 \\ \beta_2: \ 0.999 \end{array}$	Char RNN	Tuneability	α: 2.51e+00	α: 3.98e-02 μ: 0.99	$\begin{array}{l} \alpha : \ 6.31\text{e-}04 \\ \epsilon : \ 1\text{e-}08 \\ \beta_1 : \ 0.9 \\ \beta_2 : \ 0.999 \end{array}$

..a modular environmen



deepobs.github.io

Leaderboard

Overview over the current optimizer leaderboard on the DeepOBS test problems. Click on See Full Results to see the plots and tables of the full benchmarking results

#1 Adam

#2 SGD

#3 Momentum 92.14 %

Quadratic Deep

A 100-dimensional noisy quadratic problem with an eigenspectrum similar to the one reported for deep neural networks.

	Optimizer	Test Loss	Speed	
#1	Momentum	87.05	70.5	#1
#2	Adam	87.11	39.9	#2
#3	SGD	87.40	51.1	#3

MNIST - VAE

A basic variational autoencoder for the MNIST data set with three convolutional and three deconvolutional lavers.

> Test Loss Speed

27.83 1.0

38,46 1.0

F-MNIST - CNN

A simple convolutional network for the Fashion-MNIST data set. consisting of two conv and two fullyconnected lavers.

Test Accuracy

92.27 %

See Full Results

SVHN - Wide ResNet 16-4

Speed

40.1

40.6

59.1

Speed

CIFAR-10 - CNN

A slightly larger convolutional network for the Cifar-10 data set, with three conv and three fully-connected lavers.

	Optimizer	Test Accuracy	Speed
#1	Adam	84.75 %	36.0
#2	Momentum	84.41 %	40.7
#3	SGD	83.71 %	42.5

See Full Results

F-MNIST - VAE

A basic variational autoencoder for the Fashion-MNIST data set with three convolutional and three deconvolutional lavers.

Test Loss

23.07

23.80

Optimize

#1 Adam

W2

SGD

#3 Momentum

Optimizer

Momentum 52.93

Adam

SGD

Variant C of the All Convolutional Network from Striving for Simplicity for the CIFAR-100 data set consisting solely of convolutional lavers

8	Speed		Optimizer	Test Accuracy
	1.0	#1	Momentum	60.33 %
	1.0	#2	SGD	57.06 %
	1.0	#3	Adam	56.15 %

CIFAR-100 - All CNN C

The Wide ResNet 16-4 for the Street View House Numbers data set using the variant with 16 conv lavers and a widening feator of 4

128.7

152.6

15.		wide	ning factor of 4.
ipeed		Optimizer	Test Accuracy
2.8	#1	Momentum	95.53 %

#1	Momentum	95.53 %	10.8
#2	SGD	95.37 %	28.3
#3	Adam	95.25 %	12.1

Tolstoi - Char RNN

See Full Results

A recurrent neural network for character-level language modeling on the novel War and Peace by Leo Tolstoy using two LSTM layers.

	Optimizer	Test Accuracy	Speed
01	SGD	62.07 %	47.7
82	Momentum	61.30 %	88.0
83	Adam	61.23 %	62.8

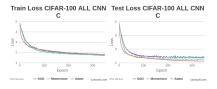
See Full Results

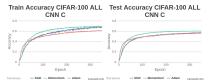
The DeepOBS Leaderboard

...a work in progress

deepobs.github.io

Leaderboard CIFAR-100 - All CNN C





Overview Table

Rank	Optimizer	Final Test Accuracy	Best Test Accuracy	Final Train Accuracy	Best Train Accuracy	Final Test Loss	Best Test Loss	Final Train Loss	Best Train Loss	Speed
1	Momentum	60.33%	60.83%	69.25%	70.25%	2.29	2.24	1.79	1.75	72.8
2	SGD	57.06%	57.77%	68.48%	69.31%	2.39	2.36	1.74	1.70	128.7
3	Adam	56.15%	56.41%	60.89%	61.52%	2.13	2.12	1.83	1.81	152.6

>_ Install DeepOBS

Visit deepobs.github.io

MNIST - VAE

the MNIST data set with three

convolutional and three

CIFAR-100 - All CNN C

solely of convolutional layers.

12 Abn 1813 h

Leaderboard

Overview over the current optimizer leaderboard on the DeepORS test problems. Click on See Full Results to see the plots and tables of the full benchmarking A 10D-dimensional new quarketer — A basic univitienal autoencoder for — A simile convektional returns from — A simile larger convektional returns

Copencian Stat Loss Speed Copencian Test Loss Speed C Opencian Test Accuracy Speed C Opencian Test Accuracy Speed
 Ownerstein
 Bill Lotti
 Bill Lotti
 Addem
 Colling
 Differ
 Differ

Variant C of the All Convolutional The Wide ResNet 16-4 for the Street

202.8 K3 A264 19.23 %

F-MNIST - CNN

the Fashion-MNIST data set.

SVHN - Wide ResNet 16-4

widening factor of 4.

consisting of two conv and two fully-convected

CIFAR-10 - CNN

for the Cifur-10 data set, with three

Tolstol - Char RNN

Salazy using two LSTM layers.

10 808 8237% 427 10 November 6337% 883

15 100 KUTh

LL1 FD Adam

pip install deepobs

O PyTorch Coming soon

Quadratic Deep

problem with an eigenspectrum

Ki Abel 23.87 18 Ki 6GD 23.88 14

43 Minestan 38.23 1.6

similar to the one reported for deep

- Check out Github for the Beta of DeepOBS 120
 - fsschneider.github.io/DeepOBS